Synthesis and structure of a caesium niobium(V) nitride, $CsNbN_2$

H. Jacobs and B. Hellmann

Fachbereich Chemie der Universität Dortmund, Postfach 500 500, W-4600 Dortmund 50 (Germany)

(Received September 4, 1992)

Abstract

Deep red transparent single crystals of air-stable caesium niobium(V) nitride, CsNbN₂, were obtained by the reaction of CsNH₂ with NbN (molar ratio 10:1) at 600 °C in high pressure autoclaves for 9 days. The structure was determined on the basis of X-ray single-crystal data: $Fd\bar{3}m$, a=8.740(5) Å, Z=8, $R/R_w=0.025/0.028$, $N(F_o^2) \ge 2\sigma(F_o^2) = 37$, N(variables) = 5. The compound has a filled-up β -cristobalite-type structure.

1. Introduction

Unlike Li₃N, the heavier alkali metals do not form thermodynamically stable nitrides. However, with tantalum we synthesized for the first time ternary compounds MTaN₂ with $M \equiv Na$, K, Rb and Cs. Their structures were characterized by powder methods on the basis of X-ray and neutron diffraction data [1]. We also reported the synthesis and structure of a sodium niobium(V) nitride [2]. Now we have been successful in the synthesis of single crystals of CsNbN₂ and their X-ray structure determination.

2. Experimental details

An excess of caesium amide reacts with NbN to give $CsNbN_2$:

 $CsNH_2 + NbN \longrightarrow CsNbN_2 + H_2$

$$CsNH_2 \longrightarrow Cs + \frac{1}{2}N_2 + H_2$$

The compound was synthesized by heating a mixture of NbN and $CsNH_2$ (molar ratio 1:10) for 9 days to 600 °C in high pressure autoclaves [3]. Crystals of $CsNbN_2$ are resistant against moisture and air. The pure compound was isolated as deep red, transparent regular octahedra by washing the reaction product with water. The 1:1 composition of Cs:Nb was proved by energy-dispersive X-ray analysis.

Intensity data were collected on an Enraf-Nonius CAD 4 diffractometer. The structure was calculated with the SDP system of programmes [4]. Experimental details and positional and thermal parameters are summarized in Tables 1–3. Some interatomic distances are given in Table 4.

TABLE 1. Crystal data for CsNbN₂

Crystal size (mm ³)	$0.05 \times 0.05 \times 0.05$
Unit cell parameter a (Å)	8.740(5)
V (Å ³)	667.6
Space group	Fd3m
$D_{\rm x} ({\rm g} {\rm cm}^{-3})$	5.051
$1/\mu$ (Mo K α) (mm)	0.071
Radiation	Μο Κα
Monochromator	Graphite
Scan mode	$\omega/2\overline{\Theta}$
Θ_{\max} (°)	40
h, k, l	±15, 15, 15
$R_{\rm int}$ (%)	7.7
Absorption correction	None
Independent reflections	139
Reflections with $I > 2\sigma(I)$	37
Variables	5
Final R/R_w (w = 1)	0.025/0.028
Largest peak in	0.24
final difference map (e Å ⁻³)	

TABLE 2. Atomic coordinates and isotropic thermal parameters for $CsNbN_2$

Site	Occupancy	x	у	z	<i>B</i> (Å ²)
8a	8 Nb	$\frac{1}{8}$	1 <u>8</u>	1 8	0.86(1)
8 <i>b</i>	8 Cs	3	3/8	3/8	2.80(1)
16c	16 N	Ő	Ő	Õ	3.4(2)

3. Discussion

For the first time we have succeeded in growing single crystals of a ternary nitride with caesium. The structure determination on $CsNbN_2$ reveals that this

TABLE 3. Anisotropic thermal parameters (10⁻³ Å²) for CsNbN₂

Atom	U(11)	U(22)	U(33)	U(12)	U(13)	U(23)
Cs	35.4(6)	U(11)	U(11)	0	0	0
Nb	10.9(4)	U(11)	U(11)	0	0	0
N	44(8)	U (11)	U(11)	- 10(10)	U(12)	U(12)

TABLE 4. Interatomic distances (Å) for CsNbN2 and CsTaN2

CsNbN ₂		CsTaN ₂ [1]		
CsN	12×3.622	Cs-N	12×3.637	
Cs	4×3.783	-Cs	4×3.799	
–Nb	4×3.783	–Ta	4×3.799	
	6×4.368		6×4.386	
Nb–N	4×1.892	Ta–N	4×1.899	
–Nb	4×3.783	–Ta	4×3.799	
N–N	6×3.089	N–N	6×3.102	

compound crystallizes isotypically to $CsTaN_2$ [1], both having the filled-up β -cristobalite-type structure [5].

The distance d(Nb-N) = 1.89 Å is nearly the same as the distance d(Ta-N) = 1.90 Å in CsTaN₂, while the caesium-nitrogen distances are d(Cs-N) = 3.62 and 3.64 Å respectively.

The preparation of single crystals of ternary nitrides $MNbN_2$ with $M \equiv K$ and Rb is in progress.

Acknowledgments

Financial support was given by the "Deutsche Forschungsgemeinschaft" and the "Fonds der Chemischen Industrie".

References

- 1 H. Jacobs and E. v. Pinkowski, J. Less-Common Met., 146 (1989) 147.
- 2 H. Jacobs and B. Hellmann, J. Alloys Comp., 191 (1993) 51.
- 3 H. Jacobs and D. Schmidt, in E. Kaldis (ed.), *Current Topics* in Materials Science, Vol. 8, North-Holland, Amsterdam, 1981, p. 379.
- 4 B. A. Frenz, in H. Schenk, R. Olthof-Hazekamp, H. van Konigsveld and G. C. Bassi (eds.), *Computing in Crystallography*, Delft University Press, Delft, 1978, p. 64.
- 5 D. R. Peacor, Z. Kristallogr., 138 (1973) 274.